RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 763–775 (Mi mzm14244)

Статьи, опубликованные в английской версии журнала

On a Nonlocal Inverse Boundary Value Problem for the Sixth-Order Boussinesq Equation with Nonlocal Time Integral Conditions of the Second Kind

A. S. Farajov

Azerbaijan State Pedagogical University, Baku

Аннотация: A classical solution of a nonlinear inverse boundary value problem for the sixth-order Boussinesq equation with double dispersive term under nonlocal time integral conditions of the second kind is studied. The problem essentially consists in determining not only the solution but also the unknown coefficients. It is considered in a rectangular area. The original inverse boundary value problem is solved by passing to an auxiliary inverse problem. The existence and uniqueness of a solution to this auxiliary problem are proved by using compression mappings. The transition back to the original inverse problem leads to the conclusion that the original inverse problem is solvable.

Ключевые слова: inverse boundary value problem, classical solution, Fourier method, sixth-order Boussinesq equation.

Поступило: 27.04.2022
Исправленный вариант: 01.06.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 763–775

Реферативные базы данных:


© МИАН, 2024