RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 895–902 (Mi mzm14247)

Статьи, опубликованные в английской версии журнала

Pseudocomplete Riemannian Analytic Manifolds

V. A. Popov

Financial University under the Government of the Russian Federation, Moscow

Аннотация: We study the analytic extension of a locally given Riemannian analytic metric to a metric of a nonextendable manifold. Various classes of locally isometric Riemannian analytic manifolds are studied. In each of these classes, the notion of the so-called pseudocomplete manifold is defined, which generalizes the notion of completeness of a manifold. A Riemannian analytic simply connected oriented manifold $M$ is said to be pseudocomplete if it is nonextendable and there exists no locally isometric orientation-preserving covering mapping with a simply connected Riemannian manifold. Among the pseudocomplete manifolds, we single out the “most symmetric” regular pseudocomplete manifolds.

Ключевые слова: Riemannian analytic manifold, analytic extension, Lie algebra, Lie group, Killing vector field.

Поступило: 11.11.2022
Исправленный вариант: 28.11.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 895–902

Реферативные базы данных:


© МИАН, 2024