RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 6, страницы 1087–1093 (Mi mzm14269)

Статьи, опубликованные в английской версии журнала

Discrete Generating Functions

S. S. Akhtamovaa, V. S. Alekseevb, A. P. Lyapinb

a Lesosibirskij Pedagogical Institute—Branch of Siberian Federal University, Lesosibirsk, 662544, Russia
b School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041, Russia

Аннотация: The notion of a discrete generating function is defined. The definition uses the falling factorial instead of a power function. A functional equation for the discrete generating function of a solution to a linear difference equation with constant coefficients is found. For the discrete generating function of a solution to a linear difference equation with polynomial coefficients, the notion of $\mathrm{D}$-finiteness is introduced and an analog of Stanley's theorem is proved; namely, a condition for the $\mathrm{D}$-finiteness of the discrete generating function of a solution to such an equation is obtained.

Ключевые слова: generating function, $\mathrm{D}$-finiteness, $p$-recursiveness, generating series, forward difference operator.

Поступило: 18.03.2023
Исправленный вариант: 29.04.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:6, 1087–1093

Реферативные базы данных:


© МИАН, 2024