RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 116, выпуск 4, страницы 685–696 (Mi mzm14303)

Статьи, опубликованные в английской версии журнала

A new generalized $p$-local class of groups $\mathcal{S}^{p}$ and its properties

W. Liua, H. Chena, J. Tangb, S. Dongc

a School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu, China
b Wuxi Institute of Technology, Wuxi, Jiangsu, China
c School of Mathematics and Statistics, Huaiyin Normal University, Huaian, Jiangsu, China

Аннотация: A class of groups $\mathcal{S}^{p}$ containing every group $G$ whose any $pd$-chief factor $A/B$ of $G$ satisfies $| \Phi\bigl((A/B)_{p}\bigr)| \leqslant p$. We call a subgroup $H$ is a $\operatorname{CAP}_{\mathcal{S}^{p}}$-subgroup of a finite group $G$ if for any $pd$-chief factor $A/B$ of $G$, we have either $HA=HB$ or $| \Phi\bigl((H\cap A/H\cap B)_{p}\bigr)| \leqslant p$. Some characterizations for a finite group belongs to $\mathcal{S}^{p}$ are obtained under the assumption that some of its second maximal subgroups have generalized cover and avoidance properties.

Ключевые слова: maximal subgroups, second maximal subgroups, generalized cover and avoidance properties, $p$-local groups class.

MSC: 20D10, 20D20

Поступило: 06.03.2024
Исправленный вариант: 07.07.2024

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 116:4, 685–696


© МИАН, 2025