RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2025, том 117, выпуск 4, страницы 505–515 (Mi mzm14406)

Слабо лейбницевы алгебры

А. С. Джумадильдаев

Институт математики и математического моделирования, г. Алматы, Казахстан

Аннотация: Алгебра с тождествами $[a,b]c=2a(bc)-2b(ac)$, $a[b,c]=2(ab)c-2(ac)b$ называется слабо лейбницевой алгеброй. Показано, что слабо лейбницева операда самодуальна и не кошулева. Установлено, что поляризация любой слабо лейбницевой алгебры является транспонированно пуассоновой алгеброй, и наоборот, поляризация любой транспонированно пуассоновой алгебры является слабо лейбницевой алгеброй.
Библиография: 5 названий.

Ключевые слова: алгебры Лейбница, операда Кошуля, ассоциативно допустимые алгебры, ли-допустимые алгебры.

УДК: 512.554

MSC: 17A32

Поступило: 11.06.2024

DOI: 10.4213/mzm14406



© МИАН, 2025