RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 116, выпуск 4, страницы 600–613 (Mi mzm14520)

Статьи, опубликованные в английской версии журнала

Stability and dependence of solution of a fractional dynamic equation via fixed point theorem and dynamic inequality on time scales

B. Gogoia, B. Hazarikab, U. K. Sahac

a Department of Statistics and Mathematics, CKB Commerce College, Jorhat, Assam, India
b Department of Mathematics, Gawahati University, Guwahati, Assam, India
c Department of Basic and Applied Science, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India

Аннотация: The restriction of a monotone operator $P$ to the cone $\Omega$ of nonnegative decreasing functions from a weighted Orlicz space $L_{\varphi,v}$ without additional a priori assumptions on the properties of the Orlicz function $\varphi$ and the weight function $v$ is considered. An order-sharp two-sided estimate of the norm of this restriction is established by using a specially constructed discretization procedure. Similar estimates are also obtained for monotone operators over the corresponding Orlicz–Lorentz spaces $\Lambda_{\varphi,v}$. As applications, descriptions of associated spaces for the cone $\Omega$ and the Orlicz–Lorentz space are obtained. These new results are of current interest in the theory of such spaces.

Ключевые слова: monotone operator, weighted Orlicz space, cone of decreasing functions, associated norm, Orlicz–Lorentz class, discretization method.

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 116:4, 600–613


© МИАН, 2024