RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 116, выпуск 4, страницы 804–830 (Mi mzm14524)

Статьи, опубликованные в английской версии журнала

Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues

A. A. Fedotov

Saint Petersburg State University

Аннотация: We study a one-dimensional nonstationary Schrödinger equation with a potential slowly depending on time. The corresponding stationary operator depends on time as on a parameter. It has finitely many negative eigenvalues and absolutely continuous spectrum filling $[0,+\infty)$. The eigenvalues move with time to the edge of the continuous spectrum and, having reached it, disappear one after another. We describe the asymptotic behavior of a solution close at some moment to an eigenfunction of the stationary operator, and, in particular, the phenomena occurring when the corresponding eigenvalue approaches the absolutely continuous spectrum and disappears.

Ключевые слова: adiabatic evolution, stationary, generating solution, saddle point.

Поступило: 12.09.2024
Исправленный вариант: 12.09.2024

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 116:4, 804–830


© МИАН, 2024