RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 1994, том 55, выпуск 2, страницы 3–46 (Mi mzm2138)

Эта публикация цитируется в 67 статьях

Равномерно распределенные последовательности целых $p$-адических чисел

В. С. Анашин

Российский государственный гуманитарный университет

Аннотация: Пусть $\mathbb Z_p$ – кольцо $p$-адических чисел, $f\colon\mathbb Z_p\to\mathbb Z_p$ – любая функция, удовлетворяющая условию Липшица $\|f(x)-f(y)\|_p\le\|x-y\|_p$, $\{a_n\}_{n=0}^\infty$ – любая равномерно распределенная последовательность над $\mathbb Z_p$, $a\in\mathbb Z_p$ – произвольное целое $p$-адическое число, $p$ – простое. В статье изучаются условия, которым должна удовлетворять $f$, чтобы последовательность $\{f(a_n)\}_{n=0}^\infty$ или $f^n(a)=\underbrace{{f(f(\dots(f}(a)\dots)\}_{n=0}^\infty\hskip-2em}_n\qquad$ была равномерно распределена. В частности, описываются такие полиномы $f$ над полем $p$-адических чисел $\mathbb Q_p$. Изучается и многомерный вариант задачи. Результаты могут быть использованы для построения нелинейных псевдослучайных генераторов, обобщающих лемеровы линейные конгруэнтные генераторы.
Библиография: 9 названий.

УДК: 511

Поступило: 15.11.1993


 Англоязычная версия: Mathematical Notes, 1994, 55:2, 109–133

Реферативные базы данных:


© МИАН, 2024