Аннотация:
Рассматриваются функции класса $W_p^1(\omega_\varepsilon)$ или $W_p^1(\Omega_\rho\setminus\bar\omega_\varepsilon)$, где $p\geqslant1$,
$\varepsilon,\rho>0$, $\omega$ и $\Omega$ – области в $R^n$ с липшицевыми границами и диаметрами порядка $\varepsilon$, $\rho$ соответственно. В пространствах следов функций класса $W_p^1(\Omega_\rho\setminus\bar\omega_\varepsilon)$ указаны
нормы, зависящие от $\varepsilon$, $\rho$ и эквивалентные фактор-нормам
\begin{equation}
\begin{gathered}
\displaystyle\langle f\rangle_{\partial\omega_\varepsilon}=\inf_{u|_{\partial\omega_\varepsilon}=f}\|u\|_{W_p^1(\Omega_\rho\setminus\bar\omega_\varepsilon)},
\\
\langle f\rangle_{\partial\Omega_\rho}=\inf_{u|_{\partial\omega_\varepsilon}=f}\|u\|_{W_p^1(\Omega_\rho\setminus\bar\Omega_\rho)}
\end{gathered}
\end{equation}
Эквивалентность норм понимается в том смысле, что их отношение ограничено сверху
и снизу положительными постоянными, не зависящими от параметров $\varepsilon$, $\rho$.
Аналогичный результат получен для функций класса $W_p^1$, определенных в тонком
слое между двумя липшицевыми поверхностями.
Библиогр. 3 назв.