RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2024, том 15, выпуск 5, страницы 567–575 (Mi nano1301)

MATHEMATICS

Eccentricity Laplacian energy of a graph

A. Harshitha, S. Nayak, S. D'Souza

Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104

Аннотация: Let $G$ be a simple, finite, undirected and connected graph. The eccentricity of a vertex $v$ is the maximum distance from $v$ to all other vertices of $G$. The eccentricity Laplacian matrix of $G$ with $n$ vertices is a square matrix of order $n$, whose elements are $el_{ij}$, where $el_{ij}$ is $-1$ if the corresponding vertices are adjacent, $el_{ii}$ is the eccentricity of $v_i$ for $1\le i\le n$, and $el_{ij}$ is $0$ otherwise. If $\epsilon_1, \epsilon_1, \dots,\epsilon_n$ are the eigenvalues of the eccentricity Laplacian matrix, then the eccentricity Laplacian energy of $G$ is $ELE(G)=\sum_{i=1}^n|\epsilon_i-avec(G)|$, where $avec(G)$ is the average eccentricities of all the vertices of $G$. In this study, some properties of the eccentricity Laplacian energy are obtained and comparison between thge eccentricity Laplacian energy and the total $\pi$-electron energy is obtained.

Ключевые слова: distance, eccentricity, Laplacian energy.

Поступила в редакцию: 04.04.2024
Исправленный вариант: 09.09.2024
Принята в печать: 10.09.2024

Язык публикации: английский

DOI: 10.17586/2220-8054-2024-15-5-567-575



Реферативные базы данных:


© МИАН, 2025