RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2024, том 15, выпуск 5, страницы 586–596 (Mi nano1303)

MATHEMATICS

Inverse source problem for the subdiffusion equation with edge-dependent order of time-fractional derivative on the metric star graph

Zarifboy A. Sobirovab, Ariukhan A. Turemuratovaac

a National University of Uzbekistan, 100174, Tashkent, Uzbekistan
b V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Science, 100174, Tashkent, Uzbekistan
c Branch of Russian Economic University named after G. V. Plekhanov in Tashkent, 100164, Tashkent, Uzbekistan

Аннотация: The paper discusses the inverse source problem for the subdiffusion equation in the Sobolev space. The direct and inverse problems are transformed into operator equations to derive solutions. The uniqueness and existence of a strong solution to the direct problem are proven. The inverse problem is reduced to an operator equation, and the well-definedness and continuity of the corresponding resolvent operator are proven.

Ключевые слова: subdiffusion equation, star metric graph, inverse problem, generalized solution, resolvent operator.

Поступила в редакцию: 08.08.2024
Исправленный вариант: 22.09.2024
Принята в печать: 23.09.2024

Язык публикации: английский

DOI: 10.17586/2220-8054-2024-15-5-586-596



Реферативные базы данных:


© МИАН, 2025