RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2024, том 15, выпуск 6, страницы 736–741 (Mi nano1318)

MATHEMATICS

Boundary composed of small Helmholtz resonators: asymptotic approach

Igor Yu. Popova, Ekaterina S. Trifanovaa, Alexander S. Bagmutova, Alexander A. Lytaevab

a ITMO University, St. Petersburg, Russia
b Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia

Аннотация: We consider the solution of the two-dimensional Neumann problem for the Helmholtz equation in a complex region composed of a square resonator with large number of smaller square resonators connected to it through small apertures along one side. The sizes of the apertures and distances between the neighbour apertures tend to zero. We use the method of matching of asymptotic expansions of solutions. By directing the number of attached small resonators to infinity, we obtain a problem for the Laplacian in the main square with energy-dependent boundary condition.

Ключевые слова: eigenfunction, Helmholtz equation, boundary problem, asymptotics.

Поступила в редакцию: 13.07.2024
Исправленный вариант: 10.10.2024
Принята в печать: 20.10.2024

Язык публикации: английский

DOI: 10.17586/2220-8054-2024-15-6-736-741



Реферативные базы данных:


© МИАН, 2025