RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2019, том 10, выпуск 6, страницы 616–622 (Mi nano475)

Эта публикация цитируется в 5 статьях

MATHEMATICS

Threshold analysis for a family of $2\times2$ operator matrices

T. H. Rasulov, E. B. Dilmurodov

Department of Mathematics, Faculty of Physics and Mathematics, Bukhara State University, M. Ikbol str. 11, 200100 Bukhara, Uzbekistan

Аннотация: We consider a family of $2\times2$ operator matrices $\mathcal{A}_\mu(k)$, $k\in\mathbb{T}^3:=(-\pi;\pi]^3$, $\mu>0$, acting in the direct sum of zero- and one-particle subspaces of a Fock space. It is associated with the Hamiltonian of a system consisting of at most two particles on a three-dimensional lattice $\mathbb{Z}^3$, interacting via annihilation and creation operators. We find a set $\Lambda:=\{k^{(1)},\dots,k^{(8)}\}\subset\mathbb{T}^3$ and a critical value of the coupling constant $\mu$ to establish necessary and sufficient conditions for either $z=0=\min\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$ (or $z=27/2=\max\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$) is a threshold eigenvalue or a virtual level of $\mathcal{A}_\mu(k^{(i)})$ for some $k^{(i)}\in\Lambda$.

Ключевые слова: operator matrices, Hamiltonian, generalized Friedrichs model, zero- and one-particle subspaces of a Fock space, threshold eigenvalues, virtual levels, annihilation and creation operators.

Поступила в редакцию: 19.10.2019
Исправленный вариант: 13.11.2019

Язык публикации: английский

DOI: 10.17586/2220-8054-2019-10-6-616-622



Реферативные базы данных:


© МИАН, 2024