Аннотация:
Рассматривается вопрос о возможности записи уравнений движения неголономных систем в форме уравнений Лагранжа второго рода в обобщенных координатах для минимального числа параметров. Обсуждаются соответствующие результаты Ж. Адамара и А. Бегена. Доказывается, что в классической задаче с тремя степенями свободы о качении твердого тела по неподвижной плоскости без скольжения не существует случаев, когда все три уравнения Чаплыгина вырождаются в уравнения Лагранжа. Для той же задачи с двумя степенями свободы установлен самый общий вид неголономных линейных связей, когда уравнения Лагранжа второго рода оказываются применимыми для минимального числа параметров. Приведены примеры.
Ключевые слова:неголономные связи, уравнения Лагранжа первого и второго рода, множители связей, качение твердого тела без скольжения, возможные перемещения системы.