RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2019, том 15, номер 3, страницы 309–326 (Mi nd662)

Эта публикация цитируется в 1 статье

Mathematical problems of nonlinearity

Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom

S. D. Grilloa, L. M. Salomoneb, M. Zuccallib

a Instituto Balseiro, UNCuyo-CNEA, av. Bustillo 9500, San Carlos de Bariloche, Río Negro, República Argentina
b CMaLP, Fac. de Ciencias Exactas, UNLP, 50 y 115, La Plata, Buenos Aires, República Argentina

Аннотация: For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that the above-mentioned condition is not only sufficient, but also necessary. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.

Ключевые слова: underactuated systems, Hamiltonian systems, asymptotic stability, Lyapunov functions.

MSC: 93D05, 93D20, 93C10

Поступила в редакцию: 30.04.2019
Принята в печать: 12.09.2019

DOI: 10.20537/nd190309



Реферативные базы данных:


© МИАН, 2024