RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2020, том 16, номер 3, страницы 453–462 (Mi nd721)

Эта публикация цитируется в 5 статьях

Nonlinear physics and mechanics

Dynamics of the Chaplygin Ball with Variable Parameters

A. V. Borisova, E. A. Mikishaninab

a Moscow Institute of Physics and Technology (National Research University), Institutskiy per. 9, Dolgoprudny, Moscow Region, 141701 Russia
b Chuvash State University, Moskovskii prosp. 15, Cheboksary, 428015 Russia

Аннотация: This work is devoted to the study of the dynamics of the Chaplygin ball with variable moments of inertia, which occur due to the motion of pairs of internal material points, and internal rotors. The components of the inertia tensor and the gyrostatic momentum are periodic functions. In general, the problem is nonintegrable. In a special case, the relationship of the problem under consideration with the Liouville problem with changing parameters is shown. The case of the Chaplygin ball moving from rest is considered separately. Poincaré maps are constructed, strange attractors are found, and the stages of the origin of strange attractors are shown. Also, the trajectories of contact points are constructed to confirm the chaotic dynamics of the ball. A chart of dynamical regimes is constructed in a separate case for analyzing the nature of strange attractors.

Ключевые слова: Chaplygin ball, Poincaré map, strange attractor, chart of dynamical regimes.

MSC: 37J60, 37B55

Поступила в редакцию: 22.07.2020
Принята в печать: 20.08.2020

Язык публикации: английский

DOI: 10.20537/nd200304



Реферативные базы данных:


© МИАН, 2024