RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2021, том 17, номер 2, страницы 165–174 (Mi nd748)

Эта публикация цитируется в 1 статье

Mathematical problems of nonlinearity

Lorenz- and Shilnikov-Shape Attractors in the Model of Two Coupled Parabola Maps

E. Kuryzhov, E. Karatetskaia, D. Mints

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

Аннотация: We consider the system of two coupled one-dimensional parabola maps. It is well known that the parabola map is the simplest map that can exhibit chaotic dynamics, chaos in this map appears through an infinite cascade of period-doubling bifurcations. For two coupled parabola maps we focus on studying attractors of two types: those which resemble the well-known discrete Lorenz-like attractors and those which are similar to the discrete Shilnikov attractors. We describe and illustrate the scenarios of occurrence of chaotic attractors of both types.

Ключевые слова: strange attractor, discrete Lorenz attractor, hyperchaos, discrete Shilnikov attractor, two-dimensional endomorphism.

MSC: 37G35, 37G10

Поступила в редакцию: 19.04.2021
Принята в печать: 21.05.2021

Язык публикации: английский

DOI: 10.20537/nd210203



Реферативные базы данных:


© МИАН, 2024