RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 2, страницы 183–201 (Mi nd786)

Nonlinear physics and mechanics

Nonlinear Interactions in Nanolattices Described by the Classical Morse, Biswas – Hamann and Modified Lennard – Jones Potentials

S. A. Surulerea, M. Y. Shatalova, J. O. Ehigieb, A. A. Adenijia, I. A. Fedotova

a Department of Mathematics and Statistics, Tshwane University of Technology, Private Bag X680 Pretoria 0001, Staatsartillerie Road, Pretoria West, South Africa
b Department of Mathematics, University of Lagos, University Road Lagos Akoka, Yaba 101017, Lagos, Nigeria

Аннотация: The oscillatory motion in nonlinear nanolattices having different interatomic potential energy functions is investigated. Potential energies such as the classical Morse, Biswas – Hamann and modified Lennard – Jones potentials are considered as interaction potentials between atoms in one-dimensional nanolattices. Noteworthy phenomena are obtained with a nonlinear chain, for each of the potential functions considered. The generalized governing system of equations for the interaction potentials are formulated using the well-known Euler – Lagrange equation with Rayleigh’s modification. Linearized damping terms are introduced into the nonlinear chain. The nanochain has statistical attachments of 40 atoms, which are perturbed to analyze the resulting nonlinearities in the nanolattices. The range of initial points for the initial value problem (presented as second-order ordinary differential equations) largely varies, depending on the interaction potential. The nanolattices are broken at some initial point(s), with one atom falling off the slender chain or more than one atom falling off. The broken nanochain is characterized by an amplitude of vibration growing to infinity. In general, it is observed that the nonlinear effects in the interaction potentials cause growing amplitudes of vibration, accompanied by disruptions of the nanolattice or by the translation of chaotic motion into regular motion (after the introduction of linear damping). This study provides a computationally efficient approach for understanding atomic interactions in long nanostructural components from a theoretical perspective.

Ключевые слова: nonlinear interactions, 1D lattices, Euler – Lagrange, interatomic potentials, nanostructures.

MSC: 70K25, 34C15

Поступила в редакцию: 04.10.2021
Принята в печать: 11.01.2022

Язык публикации: английский

DOI: 10.20537/nd220103



Реферативные базы данных:


© МИАН, 2024