RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 2, страницы 203–215 (Mi nd787)

Эта публикация цитируется в 2 статьях

Nonlinear physics and mechanics

Application of the Kudryashov Method for Finding Exact Solutions of the Schamel – Kawahara Equation

O. González-Gaxiolaa, A. León-Ramírezb, G. Chacón-Acostaa

a Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, 05348 Mexico City, Mexico
b Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, 05348 Mexico City, Mexico

Аннотация: Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called Schamel – Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel equation that arises in plasma physics problems, by adding the high-order dispersive terms from the Kawahara equation. This article presents families of new solutions to the Schamel – Kawahara model using the Kudryashov method. By performing the symbolic computation, we show that this method is a valuable and efficient mathematical tool for solving application problems modeled by nonlinear partial differential equations (NPDE).

Ключевые слова: Schamel – Kawahara equation, Kudryashov method, exact solutions, nonlinear PDE.

MSC: 35A09, 35C07, 35Q53

Поступила в редакцию: 03.12.2021
Принята в печать: 24.02.2022

Язык публикации: английский

DOI: 10.20537/nd220204



Реферативные базы данных:


© МИАН, 2024