RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 4, страницы 563–576 (Mi nd811)

Nonlinear physics and mechanics

Numerical Orbital Stability Analysis of Nonresonant Periodic Motions in the Planar Restricted Four-Body Problem

E. A. Sukhova, E. V. Volkovba

a Moscow Aviation Institute, Volokolamskoye sh. 4, Moscow, 125080 Russia
b Mechanical Engineering Research Institute of the Russian Academy of Sciences, M. Kharitonyevskiy per. 4, Moscow, 101990, Russia

Аннотация: We address the planar restricted four-body problem with a small body of negligible mass moving in the Newtonian gravitational field of three primary bodies with nonnegligible masses. We assume that two of the primaries have equal masses and that all primary bodies move in circular orbits forming a Lagrangian equilateral triangular configuration. This configuration admits relative equilibria for the small body analogous to the libration points in the three-body problem. We consider the equilibrium points located on the perpendicular bisector of the Lagrangian triangle in which case the bodies constitute the so-called central configurations. Using the method of normal forms, we analytically obtain families of periodic motions emanating from the stable relative equilibria in a nonresonant case and continue them numerically to the borders of their existence domains. Using a numerical method, we investigate the orbital stability of the aforementioned periodic motions and represent the conclusions as stability diagrams in the problem’s parameter space.

Ключевые слова: Hamiltonian mechanics, four-body problem, periodic motions, orbital stability.

MSC: 70M20

Поступила в редакцию: 25.10.2022
Принята в печать: 29.11.2022

Язык публикации: английский

DOI: 10.20537/nd221201



Реферативные базы данных:


© МИАН, 2024