RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2022, том 18, номер 4, страницы 577–588 (Mi nd812)

Nonlinear physics and mechanics

On the Dumb-Bell Equilibria in the Generalized Sitnikov Problem

P. S. Krasilnikov, A. R. Ismagilov

Moscow Aviation Institute (National research university), Volokolamskoe sh. 4, Moscow, 125993 Russia

Аннотация: This paper discusses and analyzes the dumb–bell equilibria in a generalized Sitnikov problem. This has been done by assuming that the dumb–bell is oriented along the normal to the plane of motion of two primaries. Assuming the orbits of primaries to be circles, we apply bifurcation theory to investigate the set of equilibria for both symmetrical and asymmetrical dumb–bells.
We also investigate the linear stability of the trivial equilibrium of a symmetrical dumb–bell in the elliptic Sitnikov problem. In the case of the dumb–bell length $l \geqslant 0.983819$, an instability of the trivial equilibria for eccentricity $e \in (0, 1)$ is proved.

Ключевые слова: Sitnikov problem, dumb–bell, equilibrium, linear stability.

MSC: 37N05

Поступила в редакцию: 24.10.2022
Принята в печать: 21.11.2022

Язык публикации: английский

DOI: 10.20537/nd221203



Реферативные базы данных:


© МИАН, 2024