RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2024, том 20, номер 1, страницы 95–111 (Mi nd882)

Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder

A. A. Kilin, E. M. Artemova

Ural Mathematical Center, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: This paper addresses the problem of the motion of two point vortices of arbitrary strengths in an ideal incompressible fluid on a finite flat cylinder. A procedure of reduction to the level set of an additional first integral is presented. It is shown that, depending on the parameter values, three types of bifurcation diagrams are possible in the system. A complete bifurcation analysis of the system is carried out for each of them. Conditions for the orbital stability of generalizations of von Kármán streets for the problem under study are obtained.

Ключевые слова: point vortices, ideal fluid, flat cylinder, bifurcation diagram, phase portrait, von Kármán vortex street, stability, boundary, flow in a strip

MSC: 76B47, 70H05, 37Jxx, 34Cxx

Поступила в редакцию: 22.11.2023
Принята в печать: 20.12.2023

Язык публикации: английский

DOI: 10.20537/nd231209



© МИАН, 2024