RUS  ENG
Полная версия
ЖУРНАЛЫ // Russian Journal of Nonlinear Dynamics // Архив

Rus. J. Nonlin. Dyn., 2024, том 20, номер 5, страницы 933–944 (Mi nd931)

NONLINEAR SYSTEMS IN ROBOTICS

Room for Uncertainty in Remaining Useful Life Estimation for Turbofan Jet Engines

I. A. Serenkoa, Y. V. Dornbc, S. R. Singhd, A. V. Kornaeve

a Orel State University, ul. Komsomolskaya 95, Orel, 302026 Russia
b Institute for Artificial Intelligence, Lomonosov Moscow State University, Lomonosovsky pr. 27/1, Moscow, 119192 Russia
c Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141701 Russia
d Times School of Media, Bennett University, Plot Nos 8-11, TechZone II, Greater Noida, 201310 UP India
e Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia

Аннотация: This work addresses uncertainty quantification in machine learning, treating it as a hidden parameter of the model that estimates variance in training data, thereby enhancing the interpretability of predictive models. By predicting both the target value and the certainty of the prediction, combined with deep ensembling to study model uncertainty, the proposed method aims to increase model accuracy. The approach was applied to the well-known problem of Remaining Useful Life (RUL) estimation for turbofan jet engines using NASA’s dataset. The method demonstrated competitive results compared to other commonly used tabular data processing methods, including k-nearest neighbors, support vector machines, decision trees, and their ensembles. The proposed method is based on advanced techniques that leverage uncertainty quantification to improve the reliability and accuracy of RUL predictions.

Ключевые слова: machine learning, analysis of sequences, uncertainty quantification, recurrent neural networks, rotor machines, remaining useful life

MSC: 68Q87, 62J20

Поступила в редакцию: 12.11.2024
Принята в печать: 16.12.2024

Язык публикации: английский

DOI: 10.20537/nd241218



© МИАН, 2025