RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2018, том 7(25), выпуск 1, страницы 41–58 (Mi pa227)

Эта публикация цитируется в 20 статьях

The approximate solutions of fractional Volterra–Fredholm integro-differential equations by using analytical techniques

A. A. Hamoudab, K. P. Ghadlea

a Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India
b Department of Mathematics, Taiz University, Taiz, Yemen

Аннотация: This paper demonstrates a study on some significant latest innovations in the approximation techniques to find the approximate solutions of Caputo fractional Volterra–Fredholm integro-differential equations. To apply this, the study uses Adomian decomposition method and modified Laplace Adomian decomposition method. A wider applicability of these techniques is based on their reliability and reduction in the size of the computational work. This study provides analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.

Ключевые слова: Adomian decomposition method; Laplace transform; Volterra–Fredholm integro-differential equation; Caputo fractional derivative.

УДК: 519.71, 517.977, 517.44

MSC: 26A33, 49M27

Поступила в редакцию: 19.01.2018
Исправленный вариант: 12.05.2018
Принята в печать: 14.05.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2018.4350



Реферативные базы данных:


© МИАН, 2024