RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2018, том 7(25), спецвыпуск, страницы 101–112 (Mi pa235)

Эта публикация цитируется в 5 статьях

On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds

A. G. Losev, E. A. Mazepa

Volgograd State University, 100 Universitetsky pr., Volgograd 400062, Russia

Аннотация: We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations $\Delta u-c(x)u=g(x)$, where $c(x)\geq 0$, $g(x)$ are Hölder fuctions on a noncompact Riemannian manifold $M$ without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol'kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on $M$ and outside some compact set $B\subset M$ with the same growth "at infinity".

Ключевые слова: Riemannian manifold, nonhomogeneous elliptic equations, boundary-value problems.

УДК: 517.95

MSC: 31C12

Поступила в редакцию: 29.05.2018
Исправленный вариант: 28.08.2018
Принята в печать: 31.08.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2018.5330



Реферативные базы данных:


© МИАН, 2024