RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2018, том 7(25), выпуск 2, страницы 82–97 (Mi pa249)

Эта публикация цитируется в 1 статье

Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings

B. E. Levitskii

Kuban State University, 149 Stavropolskaya str., Krasnodar 350040, Russia

Аннотация: We consider the definitions and properties of the metric characteristics of the spatial domains previously introduced by the author, and their connection with the class of mappings, the particular case of which are the harmonic Green's mappings introduced by A. I. Janushauskas. In determining these mappings, the role of the harmonic Green's function is played by the $p$-harmonic Green's function of the $n$-dimensional region ($1<p<\infty$), the existence and properties of which are established by S. Kichenassamy and L. Veron. The properties of $p$-harmonic Green mappings established in the general case are analogous to the properties of harmonic Green's mappings ($p = 2$, $n = 3$). In particular, it is proved that the $p$-harmonic radius of the spatial domain has a geometric meaning analogous to the conformal radius of a plane domain.

Ключевые слова: reduced $p$-modulus, $p$-harmonic inner radius, $p$-harmonic Green function, $p$-harmonic Green's mapping.

УДК: 517.54

MSC: 31B15, 30C65, 58E20

Поступила в редакцию: 19.08.2018
Исправленный вариант: 08.11.2018
Принята в печать: 12.11.2018

Язык публикации: английский

DOI: 10.15393/j3.art.2018.5190



Реферативные базы данных:


© МИАН, 2024