RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 1, страницы 38–51 (Mi pa315)

Эта публикация цитируется в 1 статье

On the difference equation associated with the doubly periodic group and its applications

F. N. Garif'yanova, E. V. Strezhnevab

a Kazan State Power Engineering University, 51 Krasnosel'skaya st., Kazan 420066, Russia
b Kazan National Research Technical University named after A. N. Tupolev, 10 K. Marx st., Kazan, 42011, Russia

Аннотация: Let $D$ be a rectangle. We consider a four-element linear difference equation defined on $D$. The shifts of this equation are the generating transformations of the corresponding doubly periodic group and their inverse transformations. We search for a solution in the class of functions that are holomorphic outside $D$ and vanish at infinity. Their boundary values satisfy a Hölder condition on any compact that does not contain the vertices. At the vertices, we allow, at most, logarithmic singularities. The independent term is holomorphic on $D$, and its boundary value satisfies a Hölder condition. The independent term may not be analytically continuable across an interval of the boundary, since the solution and the independent term belong to different classes of analytical functions. We regularize the difference equation and determine the conditions for the regularization to be equivalent. If the independent term is an odd function, then the problem is solvable. Additionally, we give some applications of the difference operator to interpolation problems for integer functions of exponential type and the construction of biorthogonally conjugated systems of analytical functions.

Ключевые слова: difference equation, regularization method, biorthogonal systems, entire functions of exponential type.

УДК: 517.547

MSC: 30D05

Поступила в редакцию: 11.09.2020
Исправленный вариант: 18.09.2020
Принята в печать: 25.11.2020

Язык публикации: английский

DOI: 10.15393/j3.art.2021.9090



Реферативные базы данных:


© МИАН, 2024