RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 3, страницы 3–14 (Mi pa327)

Эта публикация цитируется в 1 статье

On the $p$-harmonic radii of circular sectors

A. S. Afanaseva-Grigorevaa, E. G. Prilepkinaba

a Far Eastern Federal University, Far Eastern Center for Research and Education in Mathematics, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
b Institute of Applied Mathematics, FEBRAS, 7 Radio Street, Vladivostok 690041, Russia

Аннотация: It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by $p$-harmonic one, and the fundamental solution of the Laplace $p$-equation acts as logarithm. In the case of $p=2$, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.

Ключевые слова: condenser capacities, conformal radius, harmonic radius, family of curves.

УДК: 517.54

MSC: 31B15

Поступила в редакцию: 19.06.2021
Исправленный вариант: 22.10.2021
Принята в печать: 27.10.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2021.10950



Реферативные базы данных:


© МИАН, 2024