Analytic functions of infinite order in half-plane
K. G. Malyutina,
M. V. Kabankoa,
T. V. Shevtsovab a Kursk State University,
33 Radischeva str., Kursk 305000, Russia
b Southwest State University,
50 Let Oktyabrya Street, 94, Kursk 305040, Russia
Аннотация:
J. B. Meles (1979) considered entire functions with zeros restricted to a finite number of rays. In particular, it was proved that if
$f$ is an entire function of infinite order with zeros restricted to a finite number of rays, then its lower order equals infinity. In this paper, we prove a similar result for a class of functions analytic in the upper half-plane. The analytic function
$f$ in
$\mathbb{C}_+=\{z:\Im z>0\}$ is called proper analytic if
$\limsup\limits_{z\to t}\ln|f(z)|\leq 0$ for all real numbers
$t\in\mathbb{R}$. The class of the proper analytic functions is denoted by
$JA$. The full measure of a function
$f\in JA$ is a positive measure, which justifies the term "proper analytic function". In this paper, we prove that if a function
$f$ is the proper analytic function in the half-plane
$\mathbb{C}_+$ of infinite order with zeros restricted to a finite number of rays
$\mathbb{L}_k$ through the origin, then its lower order equals infinity.
Ключевые слова:
half-plane, proper analytic function, infinite order, lower order, Fourier coefficients, full measure.
УДК:
517.537
MSC: 30D35 Поступила в редакцию: 10.11.2021
Исправленный вариант: 03.05.2022
Принята в печать: 04.05.2022
Язык публикации: английский
DOI:
10.15393/j3.art.2022.11010