RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2018, выпуск 11, страницы 68–71 (Mi pdma394)

Математические методы криптографии

Экспериментальное исследование криптографических свойств некоторых “легковесных” алгоритмов

К. В. Максимов, И. И. Хайруллин

НИЯУ МИФИ, г. Москва

Аннотация: Систематизированы подходы к построению блочных алгоритмов “легковесной” криптографии, изучены некоторые “легковесные” алгоритмы на основе сетей Фейстеля и SP-сетей и оценены их перемешивающие и нелинейные свойства. Определены понятия показателя сильной нелинейности (наименьшее число раундов, при котором каждая координатная функция выходного блока является нелинейной) и показателя совершенности (наименьшее число раундов, при котором каждый бит выходного блока существенно зависит от всех битов входного блока). Для алгоритмов PRESENT, MIDORI, SKINNY, CLEFIA и LILLIPUT получены точные значения экспонентов матриц существенной зависимости, построенных для раундовых функций (соответственно 3, 3, 6, 5, 5), оценки показателей совершенности (4, 3, 6, 5, 5) и показателей сильной нелинейности (1, 1, 1, 2, 2). Экспериментально установлено, что на протяжении 500 раундов каждая координатная функция выходного блока является нелинейной.

Ключевые слова: “легковесная” криптография, сеть Фейстеля, SP-сеть, матрица существенной зависимости, экспонент матрицы, показатель сильной нелинейности, показатель совершенности.

УДК: 519.1

DOI: 10.17223/2226308X/11/21



Реферативные базы данных:


© МИАН, 2024