RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2019, выпуск 12, страницы 145–151 (Mi pdma457)

Эта публикация цитируется в 2 статьях

Математические методы криптографии

A method for constructing permutations, involutions and orthomorphisms with strong cryptographic properties

R. A. de la Cruz Jiménez

Institute of Cryptography, Havana University, Havana, Cuba

Аннотация: S-Boxes are crucial components in the design of many symmetric ciphers. To construct permutations having strong cryptographic properties is not a trivial task. In this work, we propose a new scheme based on the well-known Lai-Massey structure for generating permutations of dimension $n=2k$, $k\geq2$. The main cores of our constructions are: the inversion in $\mathrm{GF}(2^k)$, an arbitrary $k$-bit non-bijective function (which has no pre-image for $0$) and any $k$-bit permutation. Combining these components with the finite field multiplication, we provide new $8$-bit permutations without fixed points possessing a very good combination for nonlinearity, differential uniformity and minimum degree — $(104; 6; 7)$ which can be described by a system of polynomial equations with degree $3$. Also, we show that our approach can be used for constructing involutions and orthomorphisms with strong cryptographic properties.

Ключевые слова: S-Box, permutation, Boolean functions.

УДК: 621.391:519.7

Язык публикации: английский

DOI: 10.17223/2226308X/12/42



Реферативные базы данных:


© МИАН, 2024