RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2020, выпуск 13, страницы 37–39 (Mi pdma491)

Эта публикация цитируется в 1 статье

Дискретные функции

On a secondary construction of quadratic APN functions

K. V. Kalginabc, V. A. Idrisovaa

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University

Аннотация: Almost perfect nonlinear functions possess the optimal resistance to the differential cryptanalysis and are widely studied. Most known constructions of APN functions are obtained as functions over finite fields $\mathbb{F}_{2^n}$ and very little is known about combinatorial constructions in $\mathbb{F}_2^n$. We consider how to obtain a quadratic APN function in $n+1$ variables from a given quadratic APN function in $n$ variables using special restrictions on new terms.

Ключевые слова: vectorial Boolean function, APN function, quadratic function, secondary construction.

УДК: 519.7

Язык публикации: английский

DOI: 10.17223/2226308X/13/11



© МИАН, 2024