Аннотация:
Рассматривается связная компактная абелева группа $G$ с линейно упорядоченной группой характеров. Показано, что на группе $G$ существует ненулевой ганкелев оператор конечного ранга тогда и только тогда, когда ее группа характеров содержит наименьший положительный элемент. При этом условии классические теоремы Кронекера, Хартмана и Пеллера переносятся на случай ганкелевых операторов над $G$.