Аннотация:
Установлена асимптотика диагональных многочленов и аппроксимаций Эрмита–Паде $2$-го рода для системы экспонент $\{e^{\lambda_jz}\}_{j=1}^k$ в случае, когда числа $\{\lambda_jz\}_{j=1}^k$ являются корнями уравнения $\lambda^k=1$. Доказанные теоремы дополняют известные результаты Паде, Д. Браесса, А. И. Аптекарева, Г. Шталя, Ф. Вилонского, В. Ван Аше, А. Э. Койэлаарса, А. П. Старовойтова, полученные в случае, когда $\{\lambda_p\}_{p=0}^k$ — различные действительные числа.