Об одной краевой задаче типа задачи Трикоми для уравнения смешанного параболо-гиперболического типа второго порядка с тремя смещениями в гиперболической части области
Аннотация:
В данной работе исследована краевая задача со смещением для неоднородного уравнения смешанного параболо-гиперболического типа второго порядка с волновым оператором в области гиперболичности, когда в качестве граничного условия задана линейная комбинация производных от значений искомой функции на двух независимых характеристиках и на линии изменения типа с переменными коэффициентами. При определенном условии на коэффициенты, входящие в постановку задачи, решение исследуемой задачи выписано в явном виде. Показано, что при нарушении указанного условия на коэффициенты, однородная задача, соответствующая исследуемой задаче 1, имеет бесчисленное множество линейно независимых решений, а множество решений соответствующей неоднородной задачи может существовать только при дополнительном требовании на заданные функции.
Ключевые слова:краевая задача со смещением, уравнение смешанного параболо- гиперболического типа, существование и единственность решения задачи.