Аннотация:
В работе изучена структура комплексного стохастического потенциала напряженно деформированного состояния анизотропной среды. С его помощью поставлены краевые задачи для определения неизвестных напряжений и деформаций. Разработан алгоритм их решения. Отличием указанных краевых задач от используемых краевых задач классической теории упругости является то, что детерминированные краевые условия заменяются на стохастические. Это позволяет расширить область применения модели на среды, которые не являются абсолютно однородными. Кроме того, предложенная форма стохастического комплексного потенциала позволяет учитывать внутренние напряжения исследуемых образцов. Для иллюстрации работы алгоритма приведено решение основной задачи теории упругости для анизотропной среды, ослабленной отверстием близким к эллиптическому.