Аннотация:
Рассматривается классическая двумерная задача Коши–Пуассона для океана с упругим дном. Вода в океане моделируется несжимаемой жидкостью. Линейная задача формулируется как задача с начальными условиями для потенциала скорости в области, занятой жидкостью, потенциала расширения-сжатия и потенциала сдвига в области, занятой упругой средой. Для получения выражений для формы депрессии свободной поверхности и компоненты вертикальных смещений точек дна океана через кратные интегралы с бесконечными пределами используются преобразования Лапласа по времени и преобразование Ханкеля по пространственной координате, которые вычисляются методом наискорейшего спуска. Исследована зависимость отношения амплитуды смещений точек дна океана к амплитуде смещений точек свободной поверхности от времени и от глубины океана при различных значениях параметров задачи и формах начальных возмущений. Проведено сравнение полученных результатов с аналитическим решением задачи при наличии твердого дна.
Ключевые слова:задача Коши–Пуассона, упругое дно, волны расширения-сжатия, сдвиговые волны, преобразования Лапласа и Ханкеля, метод наискорейшего спуска.
УДК:
532.59
Поступила в редакцию: 24.08.2022 Исправленный вариант: 21.11.2022 Принята в печать: 28.11.2022