Аннотация:
В работе рассматриваются алгоритмы высокоточной арифметики, основанные на использовании многомодульных систем остаточных классов (СОК) для представления мантисс чисел с плавающей точкой произвольной разрядности; порядок хранится в двоичной системе счисления. Такое представление обеспечивает большой динамический диапазон и допускает эффективное распараллеливание арифметических операций над цифрами многоразрядных мантисс по модулям СОК, что хорошо согласуется с особенностями архитектуры современных параллельных вычислительных систем. Дополнительно, в числовой формат включена атрибутивная информация, которая обеспечивает быструю оценку величины мантиссы, масштабированной относительно произведения модулей, и способствует ускоренному выполнению целого ряда проблемных для СОК немодульных процедур, таких как сравнение, контроль переполнения диапазона, округление и пр. Представлены результаты экспериментальной оценки точности и быстродействия алгоритмов, а также эффективности использования SIMD.
Ключевые слова и фразы:компьютерная арифметика, высокоточные вычисления, параллельные алгоритмы, система остаточных классов, SIMD.
УДК:
004.222.3+519.6
Поступила в редакцию: 27.01.2016 Подписана в печать : 24.02.2016