Аннотация:
работе проведено сравнительное исследование моделей Mask R-CNN с различными предобученными backbone-архитектурами для реализации инстанс-сегментации объектов недвижимости на аэрофотоснимках. Модели дообучались на специализированном наборе данных ППК «Роскадастр».
Анализ точности детектирования ограничивающих рамок и масок сегментации объектов выявил предпочтительные архитектуры — трансформеры Swin (Swin-S и Swin-T) и свёрточная сеть ConvNeXt-T. Высокая точность этих моделей объясняется их способностью учитывать глобальные контекстные зависимости между элементами изображения.
Результаты исследования позволяют сформулировать следующие рекомендации по выбору архитектуры backbone: для систем мониторинга в реальном времени, где критична скорость работы, целесообразно применение легковесных моделей (EfficientNet-B3, ConvNeXt-T, Swin-T), для offline задач, требующих максимальной точности (таких как картирование объектов недвижимости), рекомендована крупномасштабная модель Swin-S.
Ключевые слова и фразы:
инстанс-сегментация, backbone, Mask R-CNN, ResNet, DenseNet, EfficientNet, ConvNeXt, Swin.