RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 6, страницы 607–614 (Mi rcd1028)

Эта публикация цитируется в 59 статьях

Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation

Nikolay A. Kudryashova, Dariya V. Safonovaa, Anjan Biswasbcda

a Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
b Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria-0008, South Africa
c Department of Physics, Chemistry and Mathematics, Alabama A\&M University, Normal, AL 35762-7500, USA
d Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia

Аннотация: This paper considers the Radhakrishnan – Kundu – Laksmanan (RKL) equation to analyze dispersive nonlinear waves in polarization-preserving fibers. The Cauchy problem for this equation cannot be solved by the inverse scattering transform (IST) and we look for exact solutions of this equation using the traveling wave reduction. The Painlevé analysis for the traveling wave reduction of the RKL equation is discussed. A first integral of traveling wave reduction for the RKL equation is recovered. Using this first integral, we secure a general solution along with additional conditions on the parameters of the mathematical model. The final solution is expressed in terms of the Weierstrass elliptic function. Periodic and solitary wave solutions of the RKL equation in the form of the traveling wave reduction are presented and illustrated.

Ключевые слова: Radhakrishnan – Kundu – Laksmanan equation, integrability, traveling waves, general solution, exact solution.

MSC: 78A60, 37K10; 35Q51, 35Q55

Поступила в редакцию: 09.08.2019
Принята в печать: 06.10.2019

Язык публикации: английский

DOI: 10.1134/S1560354719060029



Реферативные базы данных:


© МИАН, 2024