RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 1, страницы 121–130 (Mi rcd1053)

Эта публикация цитируется в 2 статьях

Special issue: In honor of Valery Kozlov for his 70th birthday

Asymptotic Invariant Surfaces for Non-Autonomous Pendulum-Type Systems

Alexander A. Burovab, Anna D. Guermanc, Vasily I. Nikonovba

a Federal Research Center “Computer Science and Control”, Vavilova ul. 40, Moscow, 119333 Russia
b National Research University “Higher School of Economics”, Myasnitskaya ul. 20, Moscow, 101000 Russia
c Centre for Aerospace Science and Technologies, University of Beira Interior, Convento de Sto. António. 6201-001 Covilhã, Portugal

Аннотация: Invariant surfaces play a crucial role in the dynamics of mechanical systems separating regions filled with chaotic behavior. Cases where such surfaces can be found are rare enough. Perhaps the most famous of these is the so-called Hess case in the mechanics of a heavy rigid body with a fixed point.
We consider here the motion of a non-autonomous mechanical pendulum-like system with one degree of freedom. The conditions of existence for invariant surfaces of such a system corresponding to non-split separatrices are investigated. In the case where an invariant surface exists, combination of regular and chaotic behavior is studied analytically via the Poincaré – Mel'nikov separatrix splitting method, and numerically using the Poincaré maps.

Ключевые слова: separatrices splitting, chaotic dynamics, invariant surface.

MSC: 70H07, 70K40, 70K55

Поступила в редакцию: 15.09.2019
Принята в печать: 15.12.2019

Язык публикации: английский

DOI: 10.1134/S1560354720010104



Реферативные базы данных:


© МИАН, 2024