RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 4, страницы 349–382 (Mi rcd1070)

Bernoulli Property for Some Hyperbolic Billiards

Rodrigo M. D. Andrade

Universidade Tecnológica Federal do Paraná, Rua Cristo Rei, 19, Vila Becker, CEP 85902-490 Toledo-PR, Brasil

Аннотация: We prove that hyperbolic billiards constructed by Bussolari and Lenci are Bernoulli systems. These billiards cannot be studied by existing approaches to analysis of billiards that have some focusing boundary components, which require the diameter of the billiard table to be of the same order as the largest curvature radius along the focusing component. Our proof employs a local ergodic theorem which states that, under certain conditions, there is a full measure set of the billiard phase space such that each point of the set has a neighborhood contained (mod 0) in a Bernoulli component of the billiard map.

Ключевые слова: hyperbolic billiards, Bernoulli property, focusing billiards.

MSC: 37D50, 37D25

Поступила в редакцию: 20.08.2019
Принята в печать: 12.06.2020

Язык публикации: английский

DOI: 10.1134/S1560354720040048



Реферативные базы данных:


© МИАН, 2024