RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 1, страницы 77–97 (Mi rcd1154)

Эта публикация цитируется в 3 статьях

Components of Stable Isotopy Connectedness of Morse – Smale Diffeomorphisms

Timur V. Medvedeva, Elena V. Nozdrinovab, Olga V. Pochinkab

a Laboratory of Algorithms and Technologies for Network Analysis, HSE University, ul. Rodionova 136, 603093 Nizhny Novgorod, Russia
b International Laboratory of Dynamical Systems and Applications, HSE University, ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: In 1976 S.Newhouse, J.Palis and F.Takens introduced a stable arc joining two structurally stable systems on a manifold. Later in 1983 they proved that all points of a regular stable arc are structurally stable diffeomorphisms except for a finite number of bifurcation diffeomorphisms which have no cycles, no heteroclinic tangencies and which have a unique nonhyperbolic periodic orbit, this orbit being the orbit of a noncritical saddle-node or a flip which unfolds generically on the arc. There are examples of Morse – Smale diffeomorphisms on manifolds of any dimension which cannot be joined by a stable arc. There naturally arises the problem of finding an invariant defining the equivalence classes of Morse – Smale diffeomorphisms with respect to connectedness by a stable arc. In the present review we present the classification results for Morse – Smale diffeomorphisms with respect to stable isotopic connectedness and obstructions to existence of stable arcs including the authors’ recent results.

Ключевые слова: stable arc, Morse – Smale diffeomorphism.

MSC: 37C15, 37D15

Поступила в редакцию: 23.10.2021
Принята в печать: 14.01.2022

Язык публикации: английский

DOI: 10.1134/S1560354722010087



Реферативные базы данных:


© МИАН, 2024