RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 2, страницы 151–182 (Mi rcd1158)

Эта публикация цитируется в 2 статьях

Alexey Borisov Memorial Volume

Geodesics in Jet Space

Alejandro Bravo-Doddoli, Richard Montgomery

Dept. of Mathematics, UCSC, 1156 High Street, 95064 Santa Cruz, CA

Аннотация: The space $J^k$ of $k$-jets of a real function of one real variable $x$ admits the structure of Carnot group type. As such, $J^k$ admits a submetry (sub-Riemannian submersion) onto the Euclidean plane. Horizontal lifts of Euclidean lines (which are the left translates of horizontal one-parameter subgroups) are thus globally minimizing geodesics on $J^k$.
All $J^k$-geodesics, minimizing or not, are constructed from degree $k$ polynomials in $x$ according to [7–9], reviewed here. The constant polynomials correspond to the horizontal lifts of lines. Which other polynomials yield globally minimizers and what do these minimizers look like? We give a partial answer. Our methods include constructing an intermediate three-dimensional “magnetic” sub-Riemannian space lying between the jet space and the plane, solving a Hamilton – Jacobi (eikonal) equations on this space, and analyzing period asymptotics associated to period degenerations arising from two-parameter families of these polynomials. Along the way, we conjecture the independence of the cut time of any geodesic on jet space from the starting location on that geodesic.

Ключевые слова: Carnot group, Jet space, minimizing geodesic, integrable system, Goursat distribution, sub-Riemannian geometry, Hamilton – Jacobi, period asymptotics.

Поступила в редакцию: 05.10.2021
Принята в печать: 01.02.2022

Язык публикации: английский

DOI: 10.1134/S1560354722020034



Реферативные базы данных:


© МИАН, 2024