RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 2, страницы 198–216 (Mi rcd1160)

Эта публикация цитируется в 1 статье

Alexey Borisov Memorial Volume

On 1:3 Resonance Under Reversible Perturbations of Conservative Cubic Hénon Maps

Marina S. Gonchenkoa, Alexey O. Kazakovb, Evgeniya A. Samylinabc, Aikan Shykhmamedovb

a Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
b National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
c Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia

Аннотация: We consider reversible nonconservative perturbations of the conservative cubic Hénon maps $H_3^{\pm}: \bar x = y, \bar y = -x + M_1 + M_2 y \pm y^3$ and study their influence on the 1:3 resonance, i. e., bifurcations of fixed points with eigenvalues $e^{\pm i 2\pi/3}$. It follows from [1] that this resonance is degenerate for $M_1=0, M_2=-1$ when the corresponding fixed point is elliptic. We show that bifurcations of this point under reversible perturbations give rise to four 3-periodic orbits, two of them are symmetric and conservative (saddles in the case of map $H_3^+$ and elliptic orbits in the case of map $H_3^-$), the other two orbits are nonsymmetric and they compose symmetric couples of dissipative orbits (attracting and repelling orbits in the case of map $H_3^+$ and saddles with the Jacobians less than 1 and greater than 1 in the case of map $H_3^-$). We show that these local symmetry-breaking bifurcations can lead to mixed dynamics due to accompanying global reversible bifurcations of symmetric nontransversal homo- and heteroclinic cycles. We also generalize the results of [1] to the case of the $p:q$ resonances with odd $q$ and show that all of them are also degenerate for the maps $H_3^{\pm}$ with $M_1=0$.

Ключевые слова: cubic Hénon map, reversible system, 1:3 resonance, homoclinic tangencies, mixed dynamics.

MSC: 37G25, 37G35

Поступила в редакцию: 22.10.2021
Принята в печать: 16.02.2022

Язык публикации: английский

DOI: 10.1134/S1560354722020058



Реферативные базы данных:


© МИАН, 2024