Эта публикация цитируется в
2 статьях
Alexey Borisov Memorial Volume
On the Topological Structure of Manifolds Supporting Axiom A Systems
Vyacheslav Z. Grines,
Vladislav S. Medvedev,
Evgeny V. Zhuzhoma National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603005 Nizhny Novgorod, Russia
Аннотация:
Let
$M^n$,
$n\geqslant 3$, be a closed orientable
$n$-manifold and
$\mathbb{G}(M^n)$ the set of
$\mathrm{A}$-diffeomorphisms
$f: M^n\to M^n$ whose nonwandering set satisfies the following conditions:
$(1)$ each nontrivial basic set of the nonwandering set is either an orientable codimension one expanding attractor or an orientable codimension one contracting repeller;
$(2)$ the invariant manifolds of isolated saddle periodic points intersect transversally and codimension one separatrices of such points can intersect only one-dimensional separatrices of other isolated periodic orbits.
We prove that the ambient manifold
$M^n$ is homeomorphic to either the sphere
$\mathbb S^n$ or
the connected sum of
$k_f \geqslant 0$ copies of the torus
$\mathbb T^n$,
$\eta_f\geqslant 0$ copies of
$\mathbb S^{n-1}\times \mathbb S^1$ and
$l_f\geqslant 0$
simply connected manifolds
$N^n_1, \dots, N^n_{l_f}$ which are not homeomorphic to the sphere.
Here
$k_f\geqslant 0$ is the number of connected components of all nontrivial basic sets, $\eta_{f}=\frac{\kappa_f}{2} -k_f+\frac{\nu_f - \mu_f +2}{2},$
$ \kappa_f\geqslant 0$ is the number of bunches of all nontrivial basic sets,
$\mu_f\geqslant 0$ is the number of sinks and sources,
$\nu_f\geqslant 0$ is the number of isolated saddle periodic points with Morse index
$1$ or
$n-1$,
$0\leqslant l_f\leqslant \lambda_f$,
$\lambda_f\geqslant 0$ is the number of all periodic points whose Morse index does not belong to the set
$\{0,1,n-1,n\}$ of diffeomorphism
$f$. Similar statements hold for gradient-like flows on
$M^n$. In this case there are no
nontrivial basic sets in the nonwandering set of a flow. As an application, we get sufficient
conditions for the existence of heteroclinic intersections and periodic trajectories for Morse – Smale flows.
Ключевые слова:
Decomposition of manifolds, axiom A systems, Morse – Smale systems, heteroclinic
intersections.
MSC: 58C30,
37D15 Поступила в редакцию: 31.05.2022
Принята в печать: 22.10.2022
Язык публикации: английский
DOI:
10.1134/S1560354722060028