RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 4, страницы 425–452 (Mi rcd121)

Эта публикация цитируется в 2 статьях

Singular Sets of Planar Hyperbolic Billiards are Regular

Gianluigi Del Magnoa, Roberto Markarianb

a CEMAPRE, ISEG, Universidade Técnica de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal
b Instituto de Matemática y Estadística “Prof. Ing. Rafael Laguardia” (IMERL), Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Аннотация: Many planar hyperbolic billiards are conjectured to be ergodic. This paper represents a first step towards the proof of this conjecture. The Hopf argument is a standard technique for proving the ergodicity of a smooth hyperbolic system. Under additional hypotheses, this technique also applies to certain hyperbolic systems with singularities, including hyperbolic billiards. The supplementary hypotheses concern the subset of the phase space where the system fails to be $C^2$ differentiable. In this work, we give a detailed proof of one of these hypotheses for a large collection of planar hyperbolic billiards. Namely, we prove that the singular set and each of its iterations consist of a finite number of compact curves of class $C^2$ with finitely many intersection points.

Ключевые слова: hyperbolic billiards, ergodicity.

MSC: 37D50, 37A25, 37D25, 37N05

Поступила в редакцию: 26.11.2012
Принята в печать: 07.05.2013

Язык публикации: английский

DOI: 10.1134/S1560354713040072



Реферативные базы данных:


© МИАН, 2024