RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 4-5, страницы 756–762 (Mi rcd1231)

Special Issue: On the 80th birthday of professor A. Chenciner

The Siegel – Bruno Linearization Theorem

Patrick Bernard

PSL Research University, Université Paris-Dauphine, CEREMADE (UMR CNRS 7534), 75775 PARIS CEDEX 16, France

Аннотация: The purpose of this paper is a pedagogical one. We provide a short and self- contained account of Siegel’s theorem, as improved by Bruno, which states that a holomorphic map of the complex plane can be locally linearized near a fixed point under certain conditions on the multiplier. The main proof is adapted from Bruno’s work.

Ключевые слова: linearization, normal forms.

MSC: 37G05, 37F05, 37C15

Поступила в редакцию: 25.02.2023
Принята в печать: 07.09.2023

Язык публикации: английский

DOI: 10.1134/S1560354723040147



© МИАН, 2024