RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 6, страницы 835–840 (Mi rcd1236)

Non-Integrable Sub-Riemannian Geodesic Flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$

Alejandro Bravo-Doddoli

Dept. of Mathematics, UCSC, 1156 High Street, 95064 Santa Cruz, CA

Аннотация: The space of $2$-jets of a real function of two real variables, denoted by $J^2(\mathbb{R}^2,\mathbb{R})$, admits the structure of a metabelian Carnot group, so $J^2(\mathbb{R}^2,\mathbb{R})$ has a normal abelian sub-group $\mathbb{A}$. As any sub-Riemannian manifold, $J^2(\mathbb{R}^2,\mathbb{R})$ has an associated Hamiltonian geodesic flow. The Hamiltonian action of $\mathbb{A}$ on $T^*J^2(\mathbb{R}^2,\mathbb{R})$ yields the reduced Hamiltonian $H_{\mu}$ on $T^*\mathcal{H} \simeq T^*(J^2(\mathbb{R}^2,\mathbb{R})/\mathbb{A})$, where $H_{\mu}$ is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian $H_{\mu}$ is non-integrable by meromorphic functions for some values of $\mu$. This result suggests the sub-Riemannian geodesic flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$ is not meromorphically integrable.

Ключевые слова: Carnot group, Jet space, non-integrable system, sub-Riemannian geometry.

MSC: 53C17, 70H07, 53D25

Поступила в редакцию: 13.12.2022
Принята в печать: 04.08.2023

Язык публикации: английский

DOI: 10.1134/S1560354723060023



© МИАН, 2024