RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 1, страницы 143–155 (Mi rcd1250)

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

Classification of Axiom A Diffeomorphisms with Orientable Codimension One Expanding Attractors and Contracting Repellers

Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma

National Research University Higher School of Economics, ul. Bolshaya Pecherckaya 25/12, 603005 Nizhny Novgorod, Russia

Аннотация: Let $\mathbb{G}_k^{cod 1}(M^n)$, $k\geqslant 1$, be the set of axiom A diffeomorphisms such that the nonwandering set of any $f\in\mathbb{G}_k^{cod 1}(M^n)$ consists of $k$ orientable connected codimension one expanding attractors and contracting repellers where $M^n$ is a closed orientable $n$-manifold, $n\geqslant 3$. We classify the diffeomorphisms from $\mathbb{G}_k^{cod 1}(M^n)$ up to the global conjugacy on nonwandering sets. In addition, we show that any $f\in\mathbb{G}_k^{cod 1}(M^n)$ is $\Omega$-stable and is not structurally stable. One describes the topological structure of a supporting manifold $M^n$.

Ключевые слова: axiom A diffeomorphism, expanding attractor, contracting repeller

MSC: 58C30, 37D15

Поступила в редакцию: 18.07.2023
Принята в печать: 25.12.2023

Язык публикации: английский

DOI: 10.1134/S156035472401009X



© МИАН, 2024