Аннотация:
Let $\mathbb{G}_k^{cod 1}(M^n)$, $k\geqslant 1$, be the set of axiom A diffeomorphisms such that
the nonwandering set of any $f\in\mathbb{G}_k^{cod 1}(M^n)$ consists of $k$ orientable connected codimension one expanding attractors and contracting repellers where $M^n$ is a closed orientable $n$-manifold, $n\geqslant 3$. We classify the diffeomorphisms from $\mathbb{G}_k^{cod 1}(M^n)$ up to the global conjugacy on nonwandering sets. In addition, we show that any $f\in\mathbb{G}_k^{cod 1}(M^n)$ is $\Omega$-stable and is not structurally stable. One describes the topological structure of a supporting manifold $M^n$.
Ключевые слова:axiom A diffeomorphism, expanding attractor, contracting repeller